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Targeted Maximum Likelihood Based Causal
Inference: Part I

Mark J. van der Laan

Abstract

Given causal graph assumptions, intervention-specific counterfactual distributions of the data
can be defined by the so called G-computation formula, which is obtained by carrying out these
interventions on the likelihood of the data factorized according to the causal graph. The obtained
G-computation formula represents the counterfactual distribution the data would have had if this
intervention would have been enforced on the system generating the data. A causal effect of
interest can now be defined as some difference between these counterfactual distributions indexed
by different interventions. For example, the interventions can represent static treatment regimens
or individualized treatment rules that assign treatment in response to time-dependent covariates,
and the causal effects could be defined in terms of features of the mean of the treatment-regimen
specific counterfactual outcome of interest as a function of the corresponding treatment regimens.
Such features could be defined nonparametrically in terms of so called (nonparametric) marginal
structural models for static or individualized treatment rules, whose parameters can be thought of
as (smooth) summary measures of differences between the treatment regimen specific
counterfactual distributions.

In this article, we develop a particular targeted maximum likelihood estimator of causal
effects of multiple time point interventions. This involves the use of loss-based super-learning to
obtain an initial estimate of the unknown factors of the G-computation formula, and subsequently,
applying a target-parameter specific optimal fluctuation function (least favorable parametric
submodel) to each estimated factor, estimating the fluctuation parameter(s) with maximum
likelihood estimation, and iterating this updating step of the initial factor till convergence. This
iterative targeted maximum likelihood updating step makes the resulting estimator of the causal
effect double robust in the sense that it is consistent if either the initial estimator is consistent, or
the estimator of the optimal fluctuation function is consistent. The optimal fluctuation function is
correctly specified if the conditional distributions of the nodes in the causal graph one intervenes
upon are correctly specified. The latter conditional distributions often comprise the so called
treatment and censoring mechanism. Selection among different targeted maximum likelihood
estimators (e.g., indexed by different initial estimators) can be based on loss-based cross-
validation such as likelihood based cross-validation or cross-validation based on another
appropriate loss function for the distribution of the data. Some specific loss functions are
mentioned in this article.

Subsequently, a variety of interesting observations about this targeted maximum likelihood
estimation procedure are made. This article provides the basis for the subsequent companion Part



[I-article in which concrete demonstrations for the implementation of the targeted MLE in
complex causal effect estimation problems are provided.

KEYWORDS: causal effect, causal graph, censored data, cross-validation, collaborative double
robust, double robust, dynamic treatment regimens, efficient influence curve, estimating function,
estimator selection, locally efficient, loss function, marginal structural models for dynamic
treatments, maximum likelihood estimation, model selection, pathwise derivative, randomized
controlled trials, sieve, super-learning, targeted maximum likelihood estimation
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1 Introduction.

The data structure on the experimental unit can often be viewed as a time-
series in discrete time, possibly on a fine scale. At many time points nothing
might be observed and at possibly irregular spaced time-points events occur
and are measured, where some of these events occur at the same time. A
specified ordering of all measured variables which respects this time-ordering
and possibly additional knowledge about the ordering in which variables were
realized, implies a graph in the sense that for each observed variable we can
identify a set of parent nodes of that observed variable, defined as the set of
variables occurring before the observed variable in the ordering. The likeli-
hood of this unit specific data structure can be factorized accordingly in terms
of the conditional distribution of a node in the graph, given the parents of
that node, across all nodes. This particular factorization of the likelihood
puts no restriction on the possible set of data generating distribution, but
the ordering affects the so called G-computation formula for counterfactual
distributions of the data under certain interventions implied by this ordering.
Beyond the factorization of the likelihood in terms of a product of conditional
distributions, the G-computation formula involves specifying a set of nodes in
the time-series/graph as the variables to intervene upon, and specifying the
intervention for these nodes. These interventions could be rules that assign the
value for the intervention node (possibly) in response to the observed data on
the (observed) parents of the intervention node. The G-computation formula
is now defined as the product, across all nodes, excluding the intervention
nodes, of the conditional distribution of a node, given the parent nodes with
the intervention nodes in the parent set following their assigned values.

If it is known that the conditional distribution of a node only depends on a
subset of the parents that were implied by the ordering, then that knowledge
should be incorporated by reducing the parent set to its correct set. This
kind of knowledge does reduce the size of the model for the data generating
distribution (and such assumptions can indeed be tested from the data).

The G-computation formula provides a probability distribution of the in-
tervention specific data structure. Under certain causal graph conditions on a
causal graph on an augmented set of nodes which includes unobserved nodes
beyond the observed nodes (Pearl (2000)), such as no unblocked back-door
path from intervention node to future/downstream nodes, for each interven-
tion node, this G-computation formula equals the counterfactual distribution
of the data structure if one would have enforced the specified intervention on
the system described by the causal graph.

We remind the reader that a causal graph on a set of nodes states that
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each node is a deterministic function of its parents. It typically represents
a set of so called causal assumptions that cannot be learned from the data.
Given a declared causal graph on a set of nodes, one can formally state what
assumptions on this causal graph are needed in order to claim that a speci-
fied G-computation formula for the observed nodes corresponds with the G-
computation formula for the causal graph on the full set of nodes (that includes
the unobserved nodes), where the latter G-computation formula is then viewed
as the gold-standard representing the causal effect of interest (Pearl (2000)).

Either way, the time-ordering and possible known additional known order-
ing does provide a statistical graph for the data as explained above, and a
corresponding G-computation formula.

In this article we are concerned with (semi-parametric) efficient estimation
of the "causal” effects viewed as parameters of this G-computation formula
based on observing n independent and identically observations Oy, ..., O, of
O. Specifically, we are concerned with estimation of parameters of the G-
computation formula implied by a particular statistical graph on the observed
data structure O, in the semiparametric model that makes no assumptions
about each node-specific conditional distribution in the graph, given its par-
ents.

Formally, the density of O is modeled as

m(0) = [[PIVG) | Pa(N ()

where N (j) denote the nodes in the graph representing the observed variables,
Pa(N(j)) denote the parents of N(j), and we make no assumptions on each
conditional distribution of N(j), beyond that N(j) only depends on Pa(N(j)).
Note, however, as remarked above, if the parent sets induce more structure
than parent sets implied by an ordering of all observed variables, then this sta-
tistical graph of py might implies a real (i.e., not just nonparametric) semipara-
metric model on py, corresponding with a variety of conditional independence
assumptions.

Even if the (non-testable) causal assumptions required to interpret the G-
computation formula as a counterfactual distribution on a system fail to hold,
assuming that the ordering of the likelihood respects the ordering w.r.t. the
intervention nodes (i.e., it correctly states what variables are pre or post inter-
vention for each intervention node), the target parameters often still represent
effects of interest aiming to get as close to a causal effect as the data allows. In
particular, one can simply interpret the G-computation parameters for what
they are, namely well defined effects of interventions on the distribution of
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the data: see van der Laan (2006) for more discussion of the role of causal
parameters in variable importance analysis.

It is important to note that the probability density pg of the observed data
structure O, factored by the statistical graph, can be represented as a product
of two factors, the first factor @)y that identifies the G-computation formu-
las for interventions, and the second factor gy representing product over the
intervention nodes of the conditional distribution of the intervention nodes:
Po = Qogo. We often refer to the second factor as the censoring and/or treat-
ment mechanism in case the intervention nodes correspond with censoring
variables and/or treatment assignments. We will denote the true probability
distribution of the data-structure on the experimental unit with Fy, and its
probability density with py.

A variety of estimators of causal effects of multiple time-point interventions,
including handling censored data (by, enforcing no-censoring as part of the in-
tervention) have been proposed: Inverse Probability of Censoring Weighted
(IPCW) estimators, Augmented IPCW-estimators (which are double robust),
maximum likelihood based estimators, and targeted Maximum Likelihood Es-
timators (which are double robust). The IPCW and augmented-IPCW estima-
tors fall in the category of estimating equation methodology (van der Laan and
Robins (2003)). The augmented-IPCW estimator is defined as a solution of an
estimating equation in the target parameter implied by the so called efficient
influence curve. Maximum likelihood based estimators involve estimation of
the distribution of the data and subsequent evaluation of the target parame-
ter. Traditional maximum likelihood estimators are not targeted towards the
target parameter, and are thereby, in particular, not double robust.

Targeted maximum likelihood estimators (T-MLE) are two stage estima-
tors, the first stage applies regularized maximum likelihood based estimation,
where we advocate the use of loss-based super-learning to maximize adaptivity
to the true distribution/G-computation formula of data (van der Laan et al.
(2007)), and the second stage targets the obtained fit from the first stage to-
wards the target parameter of interest through a targeted maximum likelihood
step. This targeted maximum likelihood step removes bias for the target pa-
rameter if the censoring/treatment mechanism used in the targeted MLE step
is estimated consistently. In this targeted maximum likelihood step the initial
(first stage) estimator is treated as an off-set, and it involves the application of
a fluctuation function to the offset, where the set of possible fluctuations rep-
resents a parametric model consisting of fluctuated versions of the offset. This
parametric model is a so called least favorable parametric model in the sense
that its maximum likelihood estimator listens as much to the data w.r.t. fitting
the target parameter as a semiparametric model efficient estimator. Formally,
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it is the parametric submodel through the first stage estimator with the worst
Cramer-Rao lower bound for estimation of the target parameter (at zero fluc-
tuation), among all parametric submodels. (This worst case Cramer-Rao lower
bound as achieved by this least favorable model is actually the semiparamet-
ric information bound defined as the variance of the efficient influence curve.)
Given this least-favorable submodel, maximum likelihood estimation is used
to fit the finite dimensional fluctuation parameter. Due to this parametric
targeted maximum likelihood step the targeted maximum likelihood estima-
tor is also double robust: the estimator is consistent if the initial first-stage
estimator of the G-computation factor of the likelihood is consistent, or if the
conditional distributions of the intervention nodes (i.e., censoring/treatment
mechanism) are estimated consistently (as required to identify the fluctuation
function used in targeted maximum likelihood step). In addition, under regu-
larity conditions, the targeted MLE is (semiparametric) efficient if the initial
estimator is consistent, and consistent and asymptotically linear if either the
initial estimator or the treatment/censoring mechanism estimator is consis-
tent.

Even though the augmented IPCW-estimator is also tailored to be double
robust and locally efficient, targeted maximum likelihood estimation has the
following important advantages relative to estimating equation methods such
as the augmented-IPCW estimator: 1) the T-MLE is a substitution estima-
tor and thereby, contrary to the augmented IPCW-estimator, respects global
constraints of the model such as that one might be estimating a probability
in [0, 1], 2) since, given an initial estimator, the targeted MLE step involves
maximizing the likelihood along a smooth parametric submodel, contrary to
the augmented IPCW-estimator, it does not suffer from multiple solutions of
a (possibly non-smooth in the parameter) estimating equation, 3) contrary to
the augmented IPCW-estimator, the T-MLE does not require that the efficient
influence curve can be represented as an estimating function in the target pa-
rameter, and thereby applies to all path-wise differentiable parameters, 4) it
can use the cross-validated log-likelihood (of the targeted maximum likelihood
estimator), or any other cross-validated risk of an appropriate loss function
for the relevant factor @)y of the density (i.e., the G-computation formula)
of the data, as principle criterion to select among different targeted maxi-
mum likelihood estimators indexed by different initial estimators or different
choices of fluctuation models. The latter allows fine tuning of the initial esti-
mator of Qg as well as the fine tuning of the estimation of the unknowns (e.g.,
censoring/treatment mechanism gg) of the fluctuation function applied in the
targeted maximum likelihood step, thereby utilizing the excellent theoretical
and practical properties of the loss-function specific cross-validation selector.
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On the other hand, the augmented-IPCW estimator cannot be evaluated based
on a loss function for )y alone, but also requires a choice of loss function for
go- The latter point 4) also allows the targeted MLE to be generalized to loss-
based estimation of infinite dimensional parameters that can be approximated
by pathwise differentiable parameters.

These important theoretical advantages have a substantial practical im-
pact, by allowing one to construct estimators in a wider variety of applica-
tions, and with better finite sample and asymptotic mean squared error w.r.t.
the target. This inspired us to implement targeted maximum likelihood es-
timation of causal effects of single time point treatment in a variety of data
analyses, allowing for right-censoring of the time-till-event clinical outcome,
and missingness of the clinical outcome. Even though we discussed the overall
targeted maximum likelihood estimator for causal effect estimation of multiple
time point interventions in technical reports (see van der Laan (2008)), in this
article we aim to dive deeper into this challenge. In particular, our goal is to
present templates that can be implemented with standard statistical software,
and aim to understand the choices to be made. In future papers we will be im-
plementing these methods on real and simulated data sets and use this paper
as guidance.

The organization of this paper is as follows. Firstly, in Section 2 we start
out with presenting the targeted MLE for sequentially randomized controlled
trials. A specific targeted loss function is proposed to select among differ-
ent targeted MLE indexed by different initial estimators, which results in
maximally asymptotically efficient targeted MLE’s (Rubin and van der Laan
(2008)). Due to the double robustness of the targeted MLE this estimator is
guaranteed to estimate the causal effect of interest consistently, so that confi-
dence intervals and type-I error control are asymptotically valid. In addition,
the T-MLE utilizes all the data (including time-dependent biomarkers) and
thereby has great potential for large efficiency gains and bias reductions in
these sequentially randomized controlled trials.

In Section 3 we develop and present a general targeted MLE for any time-
series data structure, applicable to sequentially randomized controlled trials
with censoring and missingness, as well as longitudinal observational stud-
ies. The integration of loss-based (super) learning to build and select among
targeted MLE’s is made explicit again, and targeted loss functions are pro-
posed for that purpose. In addition, a variety of interesting observations are
made about the targeted MLE, relevant to the practical implementation of
this estimator in complex longitudinal observational studies and randomized
controlled trials. We end with a discussion in Section 4. Our companion Part
IT article will present demonstrations of the targeted MLE.
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Some overview of relevant literature

The construction of efficient estimators of path-wise differentiable parameters
in semi-parametric models requires utilizing the so called efficient influence
curve defined as the canonical gradient of the path-wise derivative of the pa-
rameter. This is no surprise since a fundamental result of the efficiency theory
is that a regular estimator is efficient if and only if it is asymptotically linear
with influence curve equal to the efficient influence curve. We refer to Bickel
et al. (1997), and Andersen et al. (1993). There are two distinct approaches for
construction of efficient (or locally efficient) estimators: the estimating equa-
tion approach that uses the efficient influence curve as an estimating equation
(e.g., one-step estimators based on the Newton-Raphson algorithm in Bickel
et al. (1997)), and the targeted MLE that uses the efficient influence curve to
define a targeted fluctuation function of an initial estimator, and maximizes
the likelihood in that targeted direction.

The construction of locally efficient estimators in censored data models in
which the censoring mechanism satisfies the so called coarsening at random
assumption (Heitjan and Rubin (1991), Jacobsen and Keiding (1995), Gill
et al. (1997)) has been a particular focus area. This includes also the theory
for locally efficient estimation of causal effects, since the causal inference data
structure can be viewed as a missing data structure on the intervention-specific
counterfactuals, and the sequential randomization assumption (SRA) implies
the coarsening at random assumption on the missingness mechanism, while
SRA still does not imply any restriction on the data generating distribution.
A particular construction of counterfactuals from the observed data structure,
so that the observed data structure augmented with the counterfactuals sat-
isfies the consistency (missing data structure) and sequential randomization
assumption, is provided in Yu and van der Laan (2002), providing an alterna-
tive to the implicit construction presented earlier in Gill and Robins (2001),
thereby showing that, without loss of generality, one can view causal inference
as a missing data structure estimation problem: the importance of the causal
graph is that it makes explicit the definition of the counterfactuals of interest
(i.e., full data in the censored data model).

The theory for inverse probability of censoring weighted estimation and
the augmented locally efficient IPCW estimator based on estimating func-
tions defined in terms of the orthogonal complement of the nuisance tangent
space in CAR-censored data models (including the optimal estimating func-
tion implied by efficient influence curve) was originally developed in Robins
(1993), Robins and Rotnitzky (1992). Many papers have been building on
this framework (see van der Laan and Robins (2003) for a unified treatment
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of this estimating equation methodology and references). In particular, dou-
ble robust locally efficient augmented IPCW-estimators have been developed
(Robins and Rotnitzky (2001b), Robins and Rotnitzky (2001a), Robins et al.
(2000b), Robins (2000a), van der Laan and Robins (2003), Neugebauer and
van der Laan (2005), Yu and van der Laan (2003)).

Causal inference for multiple time-point interventions under sequential ran-
domization started out with papers by Robins in the eighties: e.g. Robins
(1986), Robins (1989). The popular propensity score methods to assess causal
effects of single time point interventions (e.g., Rosenbaum and Rubin (1983),
Sekhon (2008), Rubin (2006)) are not double robust (i.e., rely on correct spec-
ification of propensity score), have no natural generalization to multiple time-
point interventions, and are also inefficient estimators for single time point in-
terventions (Abadie and Imbens (2006)), relative to the locally efficient double
robust estimators such as the augmented IPCW estimator, and the targeted
MLE.

Structural nested models and marginal structural models for static treat-
ments were proposed by Robins as well: Robins (1997b), Robins (1997a),
Robins (2000b). Many application papers on marginal structural models ex-
ist, involving the application of estimating equation methodology (IPCW and
DR-IPCW): e.g., Hernan et al. (2000), Robins et al. (2000a), Bryan et al.
(2003), Yu and van der Laan (2003). In van der Laan et al. (2005) history
adjusted marginal structural models were proposed as a natural extension of
marginal structural models, and it was shown that the latter also imply an
individualized treatment rule of interest (a so called history adjusted statically
optimal treatment regimen): see Petersen et al. (2005) for an application to
the when to switch question in HIV research.

Murphy et al. (2001) present a nonparametric estimator for a mean un-
der a dynamic treatment in an observational study. Structural nested models
for modeling and estimating an optimal dynamic treatment were proposed by
Murphy (2003), Robins (2003), Robins (2005a), Robins (2005b). Marginal
structural models for a user supplied set of dynamic treatment regimens were
developed and proposed in van der Laan (2006), van der Laan and Petersen
(2007) and, simultaneously and independently, in Robins et al. (2008). van der
Laan and Petersen (2007) also includes a data analysis application of these
models to assess the mean outcome under a rule that switches treatment
when CD4 count drops below a cut-off, and the optimal cut-off is estimated
as well. Another practical illustration in sequentially randomized trials of
these marginal structural models for realistic individualized treatment rules is
presented in Bembom and van der Laan (2007).

Unified loss-based learning based on cross-validation was developed in-
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van der Laan and Dudoit (2003), including construction of adaptive minimax
estimators for infinite dimensional parameters of the full data distribution in
CAR-censored data and causal inference models: see also van der Laan et al.
(2006), van der Vaart et al. (2006), van der Laan et al. (2004), Dudoit and
van der Laan (2005), Keleg et al. (2002), Sinisi and van der Laan (2004). This
research establishes, in particular, finite sample oracle inequalities, which state
that the expectation of the loss-function specific dissimilarity between the the
cross-validated selected estimator among the library of candidate estimators
(trained on training samples) and the truth is smaller or equal than the ex-
pectation of the loss-function specific dissimilarity between the best possible
selected estimator and the truth plus a term that is bounded by a constant
times the logarithm of the number of candidate estimators in the library di-
vided by the sample size. The only assumption this oracle inequality relies
upon is that the loss function is uniformly bounded. These oracle results
for the cross-validation selector inspired a unified super-learning methodology.
This methodology first constructs a set of candidate estimators, proposes a
family of weighted combinations of these candidate estimators indexed by a
weight vector, and uses cross-validation to determine a weighted combination
with optimal cross-validated risk. Under the assumption that the loss function
is uniformly bounded, and the number of estimators is polynomial in sample
size, the resulting estimator (super learner) is either asymptotically equivalent
with the oracle selected estimator among the library of weighted combinations
of the estimators, or it achieves the optimal parametric rate of convergence
(i.e. one of estimators corresponds with correctly specified parametric model)
up till (worst case) log-n-factor. We refer to van der Laan et al. (2007), Polley
and van der Laan (2009).

The super-learning methodology applied to a loss function for the G-
computation formula factor, )y, of the observed data distribution, provides
substitution estimators of 1. However, although these super learners of Q)
are optimal w.r.t. the dissimilarity with ¢)o implied by the loss function,
the corresponding substitution estimators will be overly biased for a smooth
parameter mapping W. This is due to the fact that cross-validation makes
optimal choices w.r.t. the (global) loss-function specific dissimilarity, but the
variance of ¥(@Q,) is of smaller order than the variance of @, itself.

van der Laan and Rubin (2006) integrates the loss-based learning of Qg
into the locally efficient estimation of pathwise differentiable parameters, by
enforcing the restriction in the loss-based learning that each candidate estima-
tor of )y needs to be a targeted maximum likelihood estimator (thereby, in
particular, enforcing each candidate estimator of )y to solve the efficient influ-
ence curve estimating equation). Another way to think about this is that each
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loss function L(Q) for @)y has a corresponding targeted loss function L(Q*),
@ representing the targeted maximum likelihood estimator applied to initial
(), and we apply the loss-based learning to the latter targeted version of the
loss function L(Q). Rubin and van der Laan (2008) propose the square of
efficient influence curve as a valid and sensible loss function L(Q) for selection
and estimation of )y in models in which gy can be estimated consistently, such
as in randomized controlled trials.

The implications of this targeted loss-based learning are that () is es-
timated optimally (maximally adaptive to the true Qo) w.r.t. the targeted
loss function L(Q*) using the super-learning methodology, and due to the
targeted MLE step the resulting substitution estimator of vy is now asymp-
totically linear as well if the targeted fluctuation function is estimated at a
good enough rate (and only requiring adjustment by confounders not yet ac-
counted for by initial estimator: see collaborative targeted MLE): either way,
asymptotic bias reduction for the target parameter will occur as long as the
censoring/treatment mechanism is estimated consistently. In addition, since
the targeted maximum likelihood step involves additional maximum likelihood
fitting, generally speaking, no loss in bias will occur, even if the wished fluc-
tuation function is heavily misspecified.

Targeted MLE have been applied in a variety of estimation problems: Bem-
bom et al. (2008), Bembom et al. (2009) (physical activity), Tuglus and van der
Laan (2008) (biomarker analysis), Rosenblum et al. (2009) (AIDS), van der
Laan (2008) (case control studies), Rose and van der Laan (2008) (case control
studies), Rose and van der Laan (2009) (matched case control studies), Moore
and van der Laan (2009) (causal effect on time till event, allowing for right-
censoring), van der Laan (2008) (adaptive designs, and multiple time point
interventions), Moore and van der Laan (2007) (randomized trials with binary
outcome). We refer to van der Laan et al. (September, 2009) for collective
readings on targeted maximum likelihood estimation.

In van der Laan and Gruber (2009) we use the loss-based cross-validation
to not only select among different initial estimators for the targeted maximum
likelihood estimators, but it is also used to select the fit of the fluctuation
function applied to the initial estimator (and thus the fit of the censoring and
treatment mechanism). This results in a so called collaborative double robust
targeted maximum likelihood estimator, which utilizes the collaborative double
robustness of the efficient influence curve, which is stronger robustness result
than the regular double robustness of the efficient influence curve the double
robust estimators rely upon. These collaborative double robust estimators
select confounders for the censoring and treatment mechanism in response
to the outcome and the initial estimator of )y, thereby allowing for more
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effective bias reductions by the resulting fluctuation functions (as predicted by
theory and observed in practice). Simulations and data analysis illustrating the
excellent performance of the collaborative double robust T-MLE are presented
in van der Laan and Gruber (2009).

2 The T-MLE in multi-stage sequentially ran-
domized controlled trials

Consider a sequentially randomized trial in which one randomly samples a
patient from a population, one collects at baseline covariates L(0), and one
randomizes the patient to a first line treatment A(0). Subsequently, one col-
lects an intermediate biomarker L(1), and based on this intermediate clinical
response one randomizes the patient to a second line treatment A(1). Finally,
one collects the clinical outcome Y of interest at a fixed point in time. This is
experiment is carried out for n patients.

We first discuss two of such sequentially randomized cancer trials.

Anderson Cancer Center Prostate Cancer Two Stage Trial: Thall
et al. (2000) present an analysis of the first clinical trial in oncology that makes
use of sequential randomization. During this trial, prostate cancer patients
who were found to be responding poorly to their initially randomly assigned
regimen (among four treatments) were re-randomized to the remaining three
candidate regimens. The clinical outcomes of interest was response to treat-
ment at a particular point in time or time till death. In contrast to conventional
trials based on a single randomization, this design allows the investigator to
study adaptive treatment strategies that adjust a patients treatment in re-
sponse to the observed course of the illness. Such adaptive strategies, also
referred to as dynamic or individualized treatment rules, form the basis of
common medical practice in cancer chemotherapy, with physicians typically
facing the following questions: Which regimen should be used to initially treat
a patient? Which regimen should the patient be switched to if the front-line
regimen fails? Given an observed intermediate outcome such as a change in
tumor size or PSA level, what threshold should be used to decide that the
current regimen is failing? In recent years, sequentially randomized trials
have been recognized as being uniquely suited to the study of these exciting
questions (Thall et al. (2000), Lavori and Dawson (2000), Lavori and Dawson
(2004), Murphy (2005)), with researchers in other clinical areas also beginning
to implement this design (Rush et al. (2003), Schneider et al. (2006), Swartz
et al. (2007)). The original results of Thall et al. (2000) focus on fitting logistic
regression models for the different stage-specific factors of the likelihood. We
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can apply the T-MLE to estimate the mean outcomes under the 12 dynamic
treatment rules indexed by first line therapy and the second line switching
therapy, and also incorporate the handling of the right-censoring.

E4494 Eastern Oncology Trial: Another example is the cancer trial
E4494, a lymphoma study of rituximab therapy that had both induction and
maintenance rituximab randomizations, where the second randomization of
maintenance versus observation was based on intermediate response to the
initial treatment. The clinical outcome of interest was time till death.

Let’s denote the observed data structure on a randomly sampled patient
from the target population with O = (L(0), A(0), L(1), A(1),Y = L(2)). For
simplicity and the sake of presentation, we will assume that A(0), L(1) and
A(1) are binary.

The likelihood can be factorized as

HP ) LG =10, AG = D) [T PAG) T AG = 1), ().

where the first factors will be denoted with Qr;), 7 = 0,1,2, and the latter
factors denote the treatment mechanism and are denoted with ga(;), 7 =0, 1.
We make the convention that for j =0, A(j — 1) and L(j — 1) are empty. In
a sequentially randomized controlled trial, the treatment assignment mecha-
nisms g4(;), J = 0, 1, are known.

Suppose our parameter of interest is the treatment specific mean EY} for a
certain treatment rule d that assigns treatment do(L(0)) at time 0 and treat-
ment d; (L(1), A(0)) at time 1. For example, dy(L(0)) = 1 is a static treatment
assignment, and dy(L(1), A(0)) = I(L(1) = 1)1 + I(L(1) = 0)0 assigns treat-
ment 1 if the patients responds well to the first line treatment 1, and treatment
0 if the patients does not respond well to the first line treatment 1. We note
that any treatment rule can be viewed as a function of L = (L(0), L(1)) only,
and therefore we will use the shorter notation d(L) = (do(L(0)),d; (L)) for the
two rules at times 0 and 1.

Note that EY; = ¥(Q) for a well defined mapping W. Specifically, we have
U(Q) = Ep,Y, where the intervened distribution P, of (L(0), L(1), L(2)) is
defined by the G-computation formula:

= H Qria(L(5))

where, for notational convenience, especially in view of our representation for
general data structures, we used the notation Qr.q«(L(j)) = Qry)(L(J) |

L(j = 1),A(j — 1) = d(L(j — 1))).
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Instead of computing an analytic mean under Py, this mean can also be
approximated by simulating a large number of observations from this dis-
tribution and taking the mean of its last component L(2). Note that P
corresponds with simulating sequentially from the conditional distributions
Qr0),a: Qray,a Qr),a, for L(0), L(1), L(2), respectively. Alternatively, this
mean is calculated analytically as follows:

V@) = Y. yP(0),1(1),p)

10),1(1),y

= >y > Pu(l(0),1(1),y)
y o 10),0(1)
= >y Y Quoy(l(0)Qr1)a(l(0),1(1))Qy.a(l(0),1(1), y).

Y 1(0),l(1)

If Qo) is replaced by the empirical distribution, then this reduces to
1 n
V(Q) ==Yy Qualla(0),1(1)Qra(Li(0),1(1). ).
=1y 1)

From this analytic expression it also follows that, even if Y is continuous,
U(Q) only depends on the conditional distribution of Y through its mean.
In this case of a 2-stage sequentially randomized controlled trial, the analytic
evaluation of V(@) seems preferable since it will be very fast to compute.

With this precise definition of the parameter as a mapping from the con-
ditional distributions Qr;, j = 0, 1,2, to the real line, given an estimator @,
we obtain a substitution estimator WU(Q),,) of ¢.

The targeted maximum likelihood estimator involves first defining an ini-
tial estimator of (), and then a subsequent targeted maximum likelihood step
according to a fluctuation function applied to this initial estimator, where this
step is tailored to remove bias from the initial estimator for the purpose of
estimating the parameter of interest ¢». The fluctuation function equals the
least favorable parametric model through () which is defined as the paramet-
ric submodel through @) which makes estimation of W (@) hardest in the sense
that the parametric Cramer-Rao Lower bound for the variance of an unbiased
estimator is maximal among all parametric submodels. Intuitively, this is the
parametric submodel for which the maximum likelihood estimator listens as
much to the data w.r.t. fitting the target parameter as an efficient estimator
in the large semiparametric model, and thereby can expected to provide im-
portant bias reduction. This definition of least favorable model implies that
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a least favorable parametric model is a model that has a score at zero fluctu-
ation equal to the efficient influence curve/canonical gradient of the pathwise
derivative of the target parameter .

We use the following Theorem that provides the representation of the effi-
cient influence curve which is needed to define the fluctuation function. This
Theorem also provides the formula for the efficient influence curve for other
parameters and for higher (than two) stage RCT’s.

Theorem 1 The efficient influence curve for ) = EYy at the true distribution
Py of O can be represented as

D* =1(D;pew | Tg),
where HA— (L
A=dD),
g(d(L) | X)
T is the tangent space of () in the nonparametric model, and II denotes the
projection operator onto T in the Hilbert space L3(Py) of square Py-integrable

functions of O, endowed with inner product (hy, he) = Ep,h1ha(O).
We have that this subspace

2
To=) T,

J=0

Dipwec(0) =

is the orthogonal sum of the tangent spaces Tg, . of the Q) -factors, which
consists of functions of L(j), Pa(L(j)) with conditional mean zero, given the
parents Pa(L(j)) of L(j), 7 =0,1,2. Recall that we also denote L(2) with Y .
Let

D =TI(D* | Ta,,,), j=0,1,2.

We have
D3(0) = E(Yq|L(0)) =
) 1(A(0) = dy(L(0))
PO = = zon %)
{CL)(Qo)(1) = Cray(Qo)(0) } {L(1) — E(L(1) | L(0), A(0))}
) _ I(A=d(L) B =\ 3

where, for 6 € {0,1},
Cry(Qo)(0) = E(Yy | L(0), A(0), L(1) = 9).
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We note that
E(Yy | L(0), A(0) = do(L(0)), L(1)) = E(Y | L(1), A = d(L)).

For general data structure O = L(0), A(0), ..., L(K), A(K),Y = L(K +1),
and Drpew = D1(0)/g(A | X) for some Dy, we have

N(Drrew | Ta,) = sagom

5 { B (S Dr@Gi, K)) | L), AG - 1))

—E(EW Dy(ali, K)) | L(G = 1), AG - 1)) } ]

= oot Cron (LG — 1, AG = D)(LG) — B(LG) | LG = 1), A - 1)),

where
Cry = E| D D@, K)) | L(j) = 1,L( — 1), A(j — 1))
a(j,K)
B\ 32 Dral KD 1EG) = 0. = 1,46 1)

Il
—~
Q
—
.
SN—

-,a(K)) and D(a(j, K)) =

Here we use the short-hand notation a(j, K)

Dy(A(j — 1), a(j, K), Lagr) (K +1)).

This Theorem allows us now to specify the targeted maximum likelihood
estimator.

The targeted maximum likelihood estimator: Consider now an ini-
tial estimator Qr(;, of each Qr¢), 7 = 0,1,2. We will estimate the first
marginal probability distribution Q1) of L(0) with the empirical distribution
of L;(0), ¢ = 1,...,n. We can estimate the conditional distributions of the
binary L(1) and the conditional mean of Y = L(2) with machine learning al-
gorithms (using logistic link for @1y, and, if Y is binary, also for Qy) such as
the super learner represented by a data adaptively (based on cross-validation)
determined weighted combination of a user supplied set of candidate ma-
chine learning algorithms estimating the particular conditional probability.
We will now define fluctuations of this initial estimator Qry, = Qram(Fn)
and Qe = Qr2)(P,) which are particular functions of the empirical prob-
ability distribution P,. We will use notation Q, = (Qr(1)n, Qr2)n). Firstly,
let

LogitQr(1yn(€) = LogitQr1yn + €Cry(Qn, gn)
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be the fluctuation function of Qr1), with fluctuation parameter €, where we
added the covariate C'r1)(Q, g) defined as

I(A(0) = do(L(0))
9a0(do(L(0)) | X)

where C1)(Q)(6) = Eo(Ya | L(0), A(0), L(1) = 6). We refer to these covari-
ate choices as clever covariates, since they represent a covariate choice that
identifies a least favorable fluctuation model, thereby providing the wished
targeted bias reduction. Similarly, if Y = L(2) is binary, then let

{Cry(@)(1) = Cy(Q)(0)},

LogitQr(2)n(€) = LogitQr(2)n + €CrLi2)(Qn, gn),
where the added the clever covariate
I (14_1 = d(l_})

Cr(@,9)(L(1), A(1)) = g(A] X)

If Y is continuous, then we use as fluctuation model the normal densities with
mean Eg, (Y | Pa(Y))+€eCr)(Qn, gn), and constant variance o2, so that the
MLE of € is the linear least squares estimator, and the score of € at € = 0 is
Cri(Y — Eq(Y | Pa(Y))), as required. We note that the above fluctuation
function indeed satisfies that the score of € at € = 0 equals the efficient influence
curve D*(Qy, gn) as presented in the Theorem above.

One now estimates ¢ with the MLE.

2 n
€n = argmax H H Qrim(€)(0;).

j=11i=1

One could also obtain a separate MLE of € for each factor 7 = 1,2. This process
is now iterated till convergence, which defines the targeted MLE (QZ, g,),
starting at initial estimator (Q,, g,), which does not involve updating of g,,.

We note that the €, for each factor separately can be estimated with stan-
dard logistic regression or linear regression software using as off-set the logit of
the initial estimator and having a single clever covariate Cr;(Q,g), j = 1,2.
If Y is also binary, the single/common ¢, defined above requires applying a
single logistic regression applied to repeated measures data set with one line of
data for each of two factors, creating a clever covariate column that alternates
the clever covariates Cr1) and Cp2), and using the corresponding off-sets. So
in both cases (separate or common €), the update step can be carried out with
a simple univariate logistic regression maximum likelihood estimator. Com-
puting a common € in the case that we use linear regression for Y and logistic
regression for L(1) requires some programming.
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We note that the clever covariate changes at each update step since the
estimator of () is updated at each step and the clever covariate is defined by
the current @Q-fit. Let Qz(j)n, Jj = 1,2, and Q} denote the final update (at
convergence of the MLE of € to zero) of Qr¢n, j = 1,2, and @, respectively.
The T-MLE of 1 is now given by ¥(Q?).

A one-step T-MLE: Interestingly, if we use a separate e,(;) for j = 1,2,
first carry out the tmle update for Qr2),, and use this updated sz)n in the
targeted MLE update for Q)11),, then we obtain a targeted MLE-algorithm
that converges in two simple steps, representing a single step update of @,,.
Below, we will generalize this one-step targeted MLE algorithm for updating
an initial @),, for general longitudinal data structures.

Statistical inference for T-MLE: Let D*(Q, g) be the efficient influence
curve at pg, = Q*g, as defined in the above Theorem. Under regularity
conditions, the T-MLE is consistent and asymptotically linear with influence
curve D*(Q*, go), where Q* denotes the limit of Q7 , and gy is the true treatment
mechanism. As a consequence, for construction of confidence intervals and
testing one can use as working model 1% ~ N (¢g, X¢), where Xy = ED*(Q, go)*
is the variance of the efficient influence curve at (Q*, go). Here ¥y can be
estimated with the empirical covariance matrix of D*(Q%, go)(O;),i = 1,...,n.

Targeted Loss-based selection among T-MLE’s indexed by dif-
ferent initial estimators: Sequentially randomized trials allow us to se-
lect a targeted loss function for selection among different targeted maximum
likelihood estimators indexed by different initial estimators. For the sake of
illustration, we assume )y is one-dimensional. Suppose a collection of ini-
tial estimators is available for Q. Let @, = Q5 (P,) be the corresponding
targeted maximum likelihood estimators, k = 1, ..., K. One of these initial es-
timators might correspond with a super learner based on the log-likelihood loss
function. We can select among these targeted maximum likelihood estimators
based on cross-validated risk of the loss function

L(Q) = D*(Q7 90)2’

which is indeed a valid loss function since it satisfies Qg = arg ming EoL(Q)(O)
among all @) with WU(Q) = ¢)y. The latter loss function is now a loss function
for the whole () and is very targeted towards 1y since it corresponds exactly
with the asymptotic variance of the targeted MLE. Thus, we would select k
with the cross-validation selector:

kn = k(P,) = axgmin Ep, P, 5 D*(Qi (P} 5,), 90)°,

where B, € {0,1}" denotes a random vector of binaries indicating a split
in training sample {i : B,(i) = 0} and validation sample {i : B,(i) = 1},
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Pf; B, P,i B, are the corresponding empirical distributions of the training and
validation sample. Here we used the notation Pf = [ f(0)dP(0). The selected
targeted maximum likelihood estimator is then Q; = Q} (P.), and 9 is now
estimated with the substitution estimator W(Q}).

Assuming a uniformly bounded loss function (i.e., a uniform bound on the
efficient influence curve), due to oracle results of the cross-validation selector,
the resulting targeted maximum likelihood estimator V(@) will be at least

n
as efficient as any of the candidate targeted maximum likelihood estimators

U(Qr,) k=1,....K.

Construction of Targeted Initial estimators: Above we showed that
the projection of the efficient influence curve on the tangent space of the con-
ditional distribution of L(1) can be written as Crq)(L(1) — Qr1), and for
Y = L(2), as Crp)(L(2) — QL2)), where we use short-hand notation. For
the purpose of constructing an initial estimator of QQr(1), we can use loss-
based learning based on the weighted squared-error loss function L;(Q L(l)) =
C’%(l)(L(l) — Qr())?, and, similarly, for the purpose of constructing of an ini-
tial estimator of (72), we can use loss-based learning based on the weighted
squared-error loss function Ly(Qr(2)) = C’E(z)(Y — Qr2)?. These are targeted
loss functions since they correspond with the components of the variance of
the efficient influence curve. Since the clever covariate Cf2) only depends on
Jo, the required weights C’%@) for loss-based learning of ()r2) are completely
known. Therefore, we first apply the loss-based learning of the true Qp2yo.
Let, Qr2)» be the resulting estimator. Now, we plug such an estimator into
the weight-function Cp;), and we use the resulting weights C’i(l) to apply loss-
based learning of ()1(1). In this way, using this backwards sequential loss-based
learning, we can generate initial candidate estimators of Qr(1), Qr(2) that are
themselves already targeted by being based on these weighted squared-error
loss functions (e.g. using different regression algorithms but using the weight
option). We can now select among the targeted MLE indexed by these different
targeted initial estimators, by using cross-validation with the above mentioned
loss function L(Q) = D*(Q, go)*.

As might already be apparent, and certainly becomes apparent in the next
section, this powerful approach combining loss-based learning with targeted
MLE for the analysis of the simple two-stage sequentially randomized con-
trolled trial generalizes to all sequentially randomized controlled trials for any
target parameter, any number of stages, and higher dimensional intermediate
time-dependent covariates.

We remark that the above targeted maximum likelihood estimator can also
be applied to the data structure L(0), A(0), L(1), A, L(2) = AY, where A(0) is
a treatment assigned at baseline (e.g, RCT), L(1) represents the data collected
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between baseline and the time point at which the outcome Y is measured, and
A is a missing indicator for Y. One simply applies the above data structure
with A(2) = A. Off course, if L(1) is not binary, then the above estimator
needs to be generalized as carried out in the next section, and, the missingness
mechanism might need to be estimated from the data.

3 Targeted MLE of parameters of the
G-computation formula.

We will now present the general approach to obtain a targeted maximum like-
lihood estimator, including the selection among different targeted maximum
likelihood estimators indexed by different initial estimators. The choice of loss
function we will use for the latter will depend on if one is willing to assume
that the treatment/censoring mechanism is correctly estimated (or known, as
in a S-RCT), or that one wishes to rely on double robustness, and we will
provide appropriate loss functions for both purposes. This will generalize the
above targeted maximum likelihood estimator for a two-stage sequentially ran-
domized controlled trial to arbitrary sequentially randomized controlled trials,
including S-RCT’s that are subject to right-censoring or missingness and for
which one is willing to assume that censoring/missingness is well understood.
In addition, it will present the double robust T-MLE for observational studies.
Organization: Firstly, we will present the likelihood using binary cod-
ing of the data structure O. Second, we will present a representation of the
efficient influence curve based on this binary factorization of the likelihood.
Third, we present the fluctuation/least favorable model of the initial estimate
and the corresponding targeted maximum likelihood estimator. Fourth, we
present a closed form one-step version of this targeted maximum likelihood
estimator that applies if one is willing to fit a separate fluctuation param-
eter for each factor of the G-computation formula factor of the likelihood.
Fifth, we present a targeted loss function that can be used to select among
different targeted maximum likelihood estimators indexed by different initial
estimators. We also present a particular type of targeted maximum likelihood
estimator that uses a degenerate initial estimator for the intermediate factors
of the G-computation formula, so that the targeted MLE algorithm only re-
quires updating the final outcome conditional distribution. Finally, we make
some observations regarding the pursuit of targeted dimension reductions sim-
plifying the G-computation formula, which can form an important ingredient
for generating different candidate targeted MLE’s, and control complexity.
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3.1 A factorization of likelihood of data in terms of bi-

nary variables.
Suppose the data structure O = (L(0), A(0),..., L(K), A(K), L(K + 1)) for

one unit involves collection of treatment and censoring actions coded with
A(t) at times t = 0,..., K, and time-dependent covariate and outcome data
at times ¢ = 0,..., K + 1. We note that L(t) can become degenerate after
censoring and or after a terminal event like death, so that this data structure O
also allows for longitudinal data structures that are truncated by the minimum
of right-censoring and death. By choosing a fine enough discretization in time
this data structure also approximates treatment and censoring processes A(t)
that evolve in continuous time.

For the sake of presentation, we will assume that A(¢) and L(t) are discrete
valued for all ¢ so that the likelihood of O can be expressed in terms of prob-
abilities, thereby avoiding technical difficulties regarding choice of dominating
measure, without affecting the realm of practical applications.

The time ordering implies a graph with observed nodes L(t),t =0,..., K+
1, and A(t), t = 0,..., K, and a corresponding factorization of the observed
data likelihood of O, given by

K+1 K

Do = H QL(t) HgA(t)7
t=0 t=0

where Q) and ga) denote the conditional probability distributions of L(t),
given parents Pa(L(t)), and A(t), given parents Pa(A(t)), respectively. The
parent sets could be known to be subsets of the parent set implied by the time
ordering of data structure, as discussed in introduction.

This factorized likelihood can be subjected to static and dynamic inter-
ventions on the A() process mapping the probability distribution of O into
probability distributions of Oy corresponding with a static or dynamic inter-
vention d, often referred to as the G-computation formula. These interventions
could involve all A-nodes as well as a subset of these nodes. The correspond-
ing probability distributions of O, are obtained by removing the g4()’s corre-
sponding with the A(¢) nodes on which an intervention is carried out under
rule d, and substituting for A(¢) in the conditioning events (i.e., parents) of
the Qrq)-factors with [ > ¢ the corresponding intervened values.

In many applications A(t) = (A;(t), A2(t)) involves two types of actions
A;(t) and Ay(t), both relevant for defining the parameter of interest of the
probability distribution of O. For example, A;(¢) might be the treatment
assigned at time ¢, As(t) might be an indicator of being right-censored at time ¢,
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and the scientific parameter of interest, W(F,), might be defined as a parameter
of the distribution of O under the intervention on A defined by no-censoring
at any time point, and a certain treatment intervention. In many cases, one
defines the scientific parameter of interest in terms of changes of the latter
distribution under different treatment regimens, and always no censoring: for
example, marginal structural models for static or realistic dynamic treatment
regimens provide such parameters, as we demonstrate in Section 5.

We will consider the case that for each node, the model for the conditional
distributions of a nodes, given the parents, is nonparametric. Let W be the
parameter mapping so that ¢y = W(F,) denotes the parameter of interest.

Without loss of generality, we assume that, for each ¢t € {1..., K + 1},
L(t) can be coded in terms of n(t) binary variables {L(¢,j) : 7 =1,...,m}, so
that Q1) can be further factorized as

n(t)
Qe = | | Qi)

1

<.
Il

where we define Qr;) as the conditional distribution of L(t,j), given its
parents Pa(L(t, j)) defined as the parents of L(t) augmented with the first j—1
variables L(t,1),...,L(t,j—1),1=1,...,j — 1. Note that this factorizations
depends on a user-supplied ordering of the binary variables. For example, this
particular coding and ordering might be implied by what is considered natural.
The choice of coding and ordering does not affect the theoretical properties
of the resulting targeted MLE, but it does imply the binary predictors Qp,j
one will need to estimate from the data.

This now provides the following likelihood factorization for the probability
distribution of O:

K+1n(t) K
po=Quo [[ T Qe [T 940 (1)
t=1 j=1 t=0

where @)1y denotes the marginal distribution of the baseline covariates L(0).

3.2 General representation of efficient influence curve
of target parameter.

We will now work out a general representation of the efficient influence curve we
can apply to implement the targeted maximum likelihood estimator for general
longitudinal data structures. These results provide us with a template for
implementing the targeted maximum likelihood estimator for nonparametric
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models and essentially any type of longitudinal data structure that includes
time dependent treatments and censoring actions that are realized in response
to previously collected data.

Recall that in our model for F,, for each node in the statistical graph, the
conditional distribution is unspecified. Let W be the parameter mapping so
that 1y = ¥(F,) denotes the parameter of interest. If U(Py) = ¥ (Qy) is only
a parameter of the )y, then we can present the efficient influence curve of ¥
as the projection of any influence curve (i.e., gradient of path-wise derivative)
in the model in which ¢ is known onto the tangent space of () (van der Laan
and Robins (2003)):

D* =1I(D | Ty) for a certain gradient D.

Such an estimating function D is often called an IPCW-estimating function
(van der Laan and Robins (2003)). We will now be concerned with finding
a representation of this efficient influence curve in terms of an orthogonal
sum of scores of certain fluctuations Q(e) of @ at e = 0, thereby implying a
corresponding implementation of the targeted MLE.

The factorization (1) of the distribution F, implies an orthogonal de-
composition of the tangent space at F, in our model, where this tangent
space is a subspace of the Hilbert space L3(P,) endowed with inner prod-
uct (hi, ha) = Eph1(O)ho(O). This orthogonal decomposition of the tangent
space T'(Py) C L3(P, is given by

K+1 n(t)

T(Po) =Ty + ¥ > Trag) + Toar,

t=1 j=1

where T7,) is the tangent space of Q) consisting of the functions of L(0)
with mean zero, T ; is the tangent space of the conditional probability
distribution Qrj),

Tuesy = {V(L(E5) | Pa(L(t,1))) = Eay,,)V V]
= {{V(L] Pa(L(t. /))) = V(0| Pa(L{t, )} (L(t5) = Quesy(1) : VY

and T 4R is the tangent space of g. T ar can also be orthogonally decomposed
as Zfi o L'ary with Ty the tangent space of ga). Here we used the notation
Eq,.,V = E(V | Pa(L(t,j))) for the conditional expectation w.r.t. Q. If
the parent sets are all implied by a specified ordering of all measured variables,
then the model for F, is actually the nonparametric model so that the tangent
space is saturated: T(Py) = L3(P).
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In the case that U(F,) is a parameter of both @)y and go, the efficient in-
fluence curve D* will also have components in Tc4r. An example of such a
target parameter is F(Y (1) — Y(0) | A = 1), the effect among the treated,
based on observed data (W, A,Y") and the causal graph implied by time order-
ing W, A, Y. In that case the targeted MLE will also need to fluctuate an initial
fit of gy with a fluctuation having a score that coincides with the efficient influ-
ence curve. For that purpose, let’s also code A(t) in terms of binary variables.
Let A(t) be coded in terms of binary variables {A(¢,75) : j =1,...,m(t)}, and
consider the factorization o

A(t) = H JA(t,5)
j=1

where an ordering needs to be specified so that the parents of A(t, j) are given
by the parents of A(t) augmented with A(¢,1),..., A(t,7 — 1).

The corresponding orthogonal decomposition of the tangent space of g is
given by

K m(t)
Tcar = Z Z TA.5)

t=0 j=1

where

Tawy) = V(A7) | Pa(A(t, 7)) — E(V | Pa(A(Z, 5))) - V}
= {V(Pa(A(t, 1) (At J) = gaey (1 | Pa(A(t, 7)) : V1,

where we used the notation V(Pa(A(t,7)) = V(1 | Pa(A(t,j))) — V(0 |
Pa(A(t, j)), which thereby can represent any function of Pa(A(t, j)).

This factorization p(O) = [, [1; @rw.s 1, I1; 9 vields the orthogonal
decomposition of the tangent space T'(F) given by

K+1 n(t)
T(Po) =Ty + Y > Tr) +ZZTAM
t=1 j5=1 t=0 j=1

We can now state the corresponding Theorem for both a representation of a
given efficient influence curve D* as well as a projection of a function D, (e.g.)
representing an inefficient influence curve for a parameter ¥(P) = ¥¥(Q) in
a model with g known, onto the tangent space T of ().

Theorem 2 Consider the Hilbert space L3(Py) and the factorization (1) of
Py. A function D € L:(Py) which is also an element of the tangent space
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T(Py) can be represented as

K+1 n(t) K m(t)
D=Dyoy+ > Y Drajy+ Y. Y Dagy),
t=1 j=1 t=0 j=1
where
Diwoy = E(D|L(0)~ ED
Drijy = (D | Tpey)
= Crey{L(t ) — Qrep(D)},
where

Crej = E(D | L(t,j) =1, Pa(L(t,j))) = E(D | L(t,j) = 0, Pa(L(t, j))),
fort=1,..., K +1, and, for each t, j =1,...,n(t). In addition,

Dawjy = (D | Taq,y))
CA(t’]){A(t,]) - gA(t,j)(l)}v

where
Cawjy = E(D | A(t,j) = 1, Pa(A(t, 7)) — E(D | A(t, j) = 0, Pa(A(t, 7))

In particular, the projection of D onto the tangent space Ty of Q) can be

represented as
K+1 n(

(D | Tp) Do—i—ZZDLtJ

t=1 j=1
If we represent D as D(O) = Dy(A, L(A))/g(A | X) for some Dy, X =
(L(a) £ @), Lalt) = Lagen(t), assume that Pa(L{t, j)) = (A1), Pagq_(L(t, )
includes A(t — 1), then the above representation of IL(D | Ty) applies with
CL(t,j) g(A(t— 1)\1pa o)y {CL (t.9) (@)(1) - CL(t,j)(Q)(O)}

where, for 6 € {0,1},

CL(t,j)(Q)(5) = EQ Z D, | La(tfl)(tvj) =9, Paz’z(tfl)(L(taj))

a(t,K) a(t—1)=A(t—1)

Above, we used short-hand notation for 3=, 1oy Di(A (t—1),a(t, K), L1 age.x))-
and a(t, K) = (a(t),...,a(K)). Here g(a(t—1) | Pa(L(t))) denotes the condi-
tional probability of A(t—1) = a(t—1), given Pasu—1)(L(t)), and it also equals
the conditional probability of A(t — 1) = a(t — 1), given Lq(t, j), Pa.(L(t, 5)).
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Proof of Theorem. We only need to prove the latter representation of C'r,(; ;.

We have D(A, L(A)) = Di(A, L(A))/g(A | X), and we consider the case
that Pa(L(t, 7)) includes A(t — 1). For the sake of this proof we exclude the
treatment nodes A(t — 1) from Pa(L(t,7)). Setting A(t — 1) = a(t — 1), gives
us the following conditional expectation to consider

E(D:(A)/g(A | X) | L(t,5), Pa(L(t, 5)), A(t — 1) = a(t — 1)).

We first condition on X and A(t —1). This corresponds with taking an expec-
tation w.r.t. Hf:tg(A(s) | Pa(A(s))). This gives us

Z Dy(a)/g(a(t —1) | X) | La(t, j), Paa(L(t, ), A(t — 1) = a(t — 1)).

This conditional expectation for each a(t, K)-specific term is a sum over L,
compatible with L,(t, j), Pa.(L(t, 5)). Specifically,

Di(a . . T _
ZLa 9@ tl 1))|X) (La | La(t, j), Paq(L(t, 5)), At — 1) = a(t — 1))
=3 P(La,La(t,§),Paa(L(t,5)),A(t=1)=a(t-1))
L g(a t 1 |X) P(Lq(t,5),Paa(L(t,5)), A(t—l):&(t—lg)

- Z{La :La(t,5),Paa(L(t,5))} Dl( ) P(La(t,5),Paa(L(t, J)a) A(t—1)=a(t—1))
- 1 > o .
g(a(t—1)|La(t, J) Pag(L(t,5)) 4={La:La(t,j),Paa(L(t,j))} 1 P(Lq(t,5),Paa(L(t,7)))

= sainnanPacany Le(Pi(@) | La(t,j), Paa(L(t, 7)).

We will now prove that, by conditional independence assumptions of the sta-

tistical graph, g(a(t — 1) | Lo(t, ), Pau(L(t,))) = g(alt — 1) | Pau(L(1))). To
see this we first note that g(a(t — 1) | Lu(t, ), Pa.(L(t,7))) equals

Z g(C_L(t - 1) ‘ Ea<t - 1))P<Ea(t - 1) ’ La(t7j>7paa(L<t7j>>>'

La(t—1)

Since Pa,(L(t,j)) are the parents of L,(t, j), we have
P(Ly(t —1) | Lo(t,7), Pao(L(t,j))) = P(La(t — 1) | Pao(L(t,7))). Thus, this
proves

g(d(t - 1) | La(t7j)apaa(L(t7j))) = g<d(t - 1) | Paa(L(taj)))'

More general, recall L,(t,j), Pa,(L(t,7)) = La(t,1),..., La(t, j), Pa.(L(t)),
and note that Pa,(L(t)) is included in L,(t—1) (recall, that we excluded A(t—
1) from Pa(L(t, 7)) in this proof). We have L,(t, 1), ..., L4(t, j) is independent
of Ly(t — 1), given Pa,(L(t)). So we obtain

P(I/a(f - 1) ‘ La<t7j)7Paa( ( )]
= P(La(t — 1) | La(t,1), ..., Ll
= P(Ly(t—1) | Paa(L(t)))

)
t,5), Paa(L(1)))
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This shows

g(a(t = 1) | La(t, §), Paa(L(t, 5))) = g(a(t — 1) | Pa.(L(t))).
To conclude, we have shown
Zat Dl(a) —
E (220 | La(t, j) = 1, Pag(L(t, ), A(t = 1) = a(t — 1))
= g(t‘z(t—l)ulDaa(L(t)))E(Z w.x) P1(a) | La@-1)(t,7) = 1, Paag—1)(L

which completes the proof. O

(t,9)));

Remark about double robustness of efficient influence curve for gen-
eral statistical graph: The efficient influence curve D* at P depends on
the Q-factor as well as a g representing conditional distributions of A(t) nodes,
possibly conditioning on subsets of the actual parents of A(t). It is immedi-
ate that PyD*(Qo,g) = 0 at possibly miss-specified g. To understand the
possible additional robustness PyD*(Q,go) for @ with ¥(Q) = ¥(Qo) and
correctly specified gg, and thereby the so called double robustness of the effi-
cient influence curve (van der Laan and Robins (2003)), we make the following
observation. By our latter representation in the above theorem, we have

D*(Q.9) = X2, 1/9(A(t = 1) | (Pau(L(1)) : @)
{Ea(Sauu0 Da(alt = 1),a(t, K)) | Laft) = L(E), Pas1(L(1) = Pa(L(1)
= Bo(Yaquao Dilalt = 0.l K)) | Pagon(LE |

where we also have that g(A(t B | (Paq(L(t)) : a)) = g(A(t 1) H(La(t), Pay(L(t)) :
a)), as we showed in the proof above. If we now take the conditional mean,
given (L, (t), Pa,(L(t)) : a), within the ) -summation, then this corresponds
with integration over go(A(t — 1) | (Paqo(L(t)) : a)). Thus at a correctly
specified go, we obtain that PyD*(Q, go) equals

Egy Z {Eq(D1(a) | La(t), Pas(L(t))) — Eq(D1(a) | Pas(L(t)))},

thereby giving us an expression that does only depend on the Qy-factor of
the distribution of the data (thus nothing to do anymore with the conditional
treatment probabilities). Some additional structure is now needed on the
statistical graph to have that the latter equals zero at miss-specified ). In
particular, if Pa(L(t)) = A(t — 1), L(t — 1) represents the history according
to the time-ordered sequence representing the longitudinal data structure O,
it follows, through cancelation of terms, that the latter equals Eg, > . D:(a),
thereby giving the wished result (corresponding with the double robustness
results in van der Laan and Robins (2003) for nonparametric full data models).
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Using normal error regression to model and fluctuate conditional
final outcome distribution. Consider the case that ¥(()y) only depends on
the conditional distribution of a final outcome Y = L(K +1), given its parents
Pa(Y') through its conditional mean, and that the projection of the efficient
influence curve (or any other gradient in model with g known) onto the tangent
space of this conditional distribution )y can be written as Cy (Y — Eg(Y |
Pa(Y)) for some function Cy of its parents Pa(Y). Then it follows that there
is no need to factorize the conditional distribution of Y in binary conditional
distributions, but one could model the conditional distribution of Y with a
normal error mean regression, and fluctuate the mean by adding the clever-
covariate extension eCy. This was explicitly illustrated in Section 2 for the
targeted MLE of EY,.

3.3 The targeted MLE based on the binary representa-
tion of density

In this subsection we will define the targeted MLE based on the representation
(1) of the density of O in terms of the binary predictors @« ), and, for the sake
of presentation, we assume that our target parameter is only a parameter of
(Qo. Consider an initial estimator Q. ), of each Qr¢ ), t=1,... K+1,j =
1,...,n(t). We will estimate the first marginal probability distribution Q)
of L(0) with the empirical distribution of L;(0), ¢ = 1,...,n. Let @, denote
the combined set of Q). across all nodes L(t, j).

The conditional distributions of L(t,j) are binary distributions which we
can estimate with machine learning algorithms (using logistic link) such as the
super learner represented by a data adaptively (based on cross-validation) de-
termined weighted combination of a user supplied library of machine learning
algorithms estimating the particular conditional probability. These estimates
could be obtained separately for each t,j or smoothing across time points ¢
and or j could be employed if appropriate, by applying such machine learn-
ing algorithms to an appropriately constructed repeated measures data set.
In particular, candidate estimators could be based on (guessed) subsets of
Pa(L(t, j)).

In addition, let g, be an estimator of gop. We will now define the following
fluctuations of the initial estimator Q) = QL) (FPn) of QL)

LogitQr,jn(€) = LogitQ Lt )yn + €CrLit ) (@ns In),

where we added the clever covariate Cf ), obtained by substitution of the
initial estimator (),, and g, of the true Q)¢ and go.
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One can now estimate ¢ with the MLE.
K+1n(t) n

€ = arg max H H H QLtjm(€)(0;).

t=1 j=1i=1

One could also obtain a separate MLE of € for each factor indexed by (¢, j):
€L(tj)n = argmnax H Qrt,jn(€)-
i=1

One can now set QL = Q,(¢,) to update Q,. This updating process Q™ =
Qm (™), m = 1,..., is now iterated till convergence, which defines the
targeted MLE starting Q7 at initial estimator (Q, gn)-

We note that the e ;), for each factor separately can be estimated with
standard logistic regression software using as off-set the logit of the initial
estimator and having a single clever covariate Cpq j)(Qn,gn). The single €,
(uniform across t, j) defined above requires applying a single univariate logistic
regression applied to repeated measures data set with one line of data for each
factor indexed by (¢, 7), creating a clever covariate column that stacks (Cp,j) :
t,j) for each unit, and using the corresponding off-set covariate logitQ . j)n-
So in both cases, the update step can be carried out with a simple univariate
logistic regression maximum likelihood estimator using the off-set command
(applied to a possibly repeated measures data set).

We note that the clever covariate changes at each update step since the
estimator of () is updated at each step and the clever covariate is defined by
the current ()-fit in the iterative algorithm. Let Qj‘:(tvj)n and @ denote the
final update (at convergence of the MLE of € to zero) of Qr ), and Q. The
targeted MLE of v is now given by ¥(Q?).

3.4 A targeted MLE based on the binary predictor rep-
resentation of density that converges in one step

In this section we will define a fast targeted MLE based on the representation
(1) of the density of O in terms of the binary predictors Qp¢, ;).

Consider an initial estimator Q. of each Qru ), t=1,..., K+ 1,5 =
1,...,n(t). We will estimate the first marginal probability distribution Q)
of L(0) with the empirical distribution of L;(0), i = 1,...,n. Let @, denote
the combined set of Q. ), across t, j.

In addition, let g,, be an estimator of gg. As above, we define the following
fluctuations of the initial estimator Qr jyn of Qr j):

LogitQr,jyn(€) = LogitQ Lt j)n + €CLit;)(@ns In),
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where we added the clever covariate Cf ), obtained by substitution of the
initial estimator (),, and g, of the true @)y and go.

Monotone dependence on (-property of the clever covariates:
Consider the clever covariate representations of Cr ;) presented in the above
Theorem 2 for Qr ;) for the case that D = D, /g with D; not indexed by
(@, g. Then the conditional expectations in the definition of the clever covariate
Crt,5) only depends on @ through {Qre) @5 >, 1} U{Qruy : 1 > j}-

Let’s enumerate all terms (01 ;) for ¢ > 1 by moving row-wise: thus Q; =
Qu1, Q2 = Qo ..., Qn(l) = an(l)a Qn(1)+1 = @21, and so on till Qy =
QK+1n(k+1), Where N = ngl n(t). Here we used temporarily the notation
Q12 = Qr1,2) and so on. Recall that @), the marginal distribution of L(0),
does not need to be fluctuated, and is thus not considered here: we will always
estimate )1,y with the empirical distribution, so that no fluctuation is needed.
Under this ordering, the k-th clever covariate C only depends on ) through
Qrit,---,Qn, k=1,...,N. In particular, Cy does not depend on @ at all,
while C'y_1 depends on @) only, Cx_; depends on Qxn_1,Qn, and so on. We
refer to this property of the clever covariates as the monotone dependence (on
Q) property, which will have an immediate implication for the corresponding
iterative T-MLE algorithm.

We denote this monotonicity property with Cy(Q) = Cp(Qrs1,-.-,QN),
where we suppress the dependence on ¢ since in the targeted MLE algorithm
presented below g will not be updated.

We obtain a separate MLE of € for each factor, but we start with last factor
first, and use the update of last factor in clever covariate of N — 1-th factor,
carry out update of N — 1-th factor, use the update of N — 1-th factor in
clever covariate of N — 2-th factor, and so on till we update the first factor
based on first clever covariate including all previously obtained updates. One
could now start over, since (),, got updated during this particular round of
updating steps, and apply the same round of updating steps to the update of
@, and iterate this till convergence. The below Theorem states that this is
not necessary, since the algorithm has converged after one round.

We state here the one step convergence of this targeted MLE algorithm.

Theorem 3 Consider the targeted MLE algorithm above applied to an ini-
tial estimator Qy, gn, using a separate €pg jyn for each factor Qrujm, t > 1,
carrying out the updating steps one at the time, starting with final factor in
likelihood, and going backwards till first term always incorporating the latest
updates on Q,, and Qo is the empirical distribution of L;(0), i =1,...,n. We
can refer to one round of updating starting at final factor and ending at first
factor as one step. This process can be iterated thereby defining an iterative
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algorithm.

Suppose that for eacht > 1, j the clever covariate in this algorithm, Cr ;) (Q),
only depends on @ through Qg = Qs for s >t and for s =t,1 > j. In that
case, the above iterative targeted MLE algorithm converges in one step/round,
and thus in exactly N = Y"1t n(t) updating steps.

We recall from the previous Theorem, if D(O) = D;(0)/g(A | X), and
the probability distribution of O is factored in binary predictors as in (1), then
D =1I(D [ Tq) = Do+ >_y; Dij, where Dy = Cray)(L(t, ) = Qrey(1)), and

CrLuy = g(A(t_1)\lpa(L(t))) X {CL(tJ)(Q)(l) - CL(t,j)(Q)m)}

where, for 6 € {0,1},

CL(t,j)<Q>(5) = EQ Z D, ‘ Lt‘z(t—l)(t’j) =0, Paﬁ(t—1)<L(taj))

a(t,K) a(t—1)=A(t-1)
This monotonicity property of the clever covariate holds if Dy does not depend
on @ itself. More generally, it holds if

_ Dy + C1(Q)

, C1(Q) is only function of O through L(0), A(K),
g

D(Q)

(so that C1(Q) will cancel out in the representation of Cpq ;) and Dy does not
depend on Q (it can depend on g).

This Theorem allows us to define closed form targeted MLE algorithms
for a large class of parameters in our semiparametric model defined by no
constraints on any of the conditional node specific distribution, given their
specified parent nodes. To utilize this closed form one-step targeted MLE, one
is forced to carry out a separate update step for each factor (only once), but
one can still use smoothing across many factors for the initial estimator.

3.5 Targeted loss-based selection among targeted MLE.

The basic idea is as follows. All our candidate estimators of )y are targeted
maximum likelihood estimators, indexed by different initial estimators of @,
and using same g, of gg. Due to fact that these targeted MLE’s solve the effi-
cient influence curve equation, it follows that the bias for 1)y involves a product
of QF — Qo and g, — go: see asymptotic linearity Theorems in van der Laan
and Robins (2003) and van der Laan and Gruber (2009). The goal is clearly to
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estimate () as accurately as possible, which will maximize efficiency and min-
imize bias for 1. Therefore, we want to use cross-validation to select among
different targeted maximum likelihood estimators, using a loss function whose
risk is minimized at )g. However, there are many choices for the loss-based
dissimilarity, FoL(Q) — L(Qo), between a candidate () and @), possible, and
one will be more targeted towards 1)y than another. For example, we can use
the log-likelihood loss function, a penalized log-likelihood loss function pre-
sented in (van der Laan and Gruber (2009)), and other loss functions inspired
by the efficient influence curve of v, as presented here (see also van der Laan
and Gruber (2009)).

Here we present two loss functions for )y that are identified by the efficient
influence curve of W. Firstly, if gy is known , then we can use

Li(Q) = {D"(Q. 90)}".

If D*(Q,g0) = D(Q, g0) — ¥(Q), then it follows that indeed

Qo = argming EyL,(Q), since the variance under Py of D*(Q), go, %) is mini-
mized at @ = (o (van der Laan and Robins (2003)). For more general efficient
influence curves, the latter property has to be explicitly verified: at minimal,
if D*(Q,9) = D(Q,g,¥(Q)), then one can replace ¥ () by a consistent esti-
mator of 1y, and use the loss function D*(Q, go, ). By the argument above,
the loss function is still valid if one is willing to assume a consistent and good
estimator of gy (an estimator that will converge faster to true gy than the
estimators of )y will converge to Qo).

To explain the rationale of this loss function, first consider the case that g
is known. If gy is known, a targeted MLE for which )7 converges to () with
U(Q) = vy is asymptotically linear with influence curve D*(Q, go) (van der
Laan and Rubin (2006)) and it is well known that the variance of D*(Q, go)
for a Q with U(Q) = 9o is minimal at Q = @y, which then corresponds with
the semiparametric information bound. Thus, EyL;(Q) equals the asymptotic
variance of the influence curve of the targeted MLE. Under the assumption that
L1(®) is uniformly bounded in all candidate @’s, we can apply the Theorems
on the cross-validation selector (e.g. van der Laan and Dudoit (2003)), which
proves that either the cross-validation selector is asymptotically equivalent
with the oracle selector, or it achieves the parametric rate of convergence. As
a consequence, loss-function based cross-validation based on this loss function
will, for large enough sample size, select the targeted maximum likelihood
estimator with the smallest asymptotic variance of its resulting substitution
estimator of ¢y (excluding the case that there are ties). If gy is unknown,
but estimated at a fast rate relative to the rate at which one estimates (),
then the above argument for the cross-validation selector still applies in first
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order: see van der Laan and Dudoit (2003) for oracle results for the cross-
validation selector based on loss functions with nuisance parameters. If gq is
estimated, and Q) # @), then the influence curve of the targeted MLE involves
another contribution, reducing the variance relative to the variance of the
influence curve for g known. In this case, L;(Q) is not exactly the asymptotic
variance of the targeted MLE, but it is still minimized at the optimal @), and
it represents a large component of the true asymptotic variance of the targeted
MLE.

Consider now the case that we are not willing to assume that estimation
of gp is easy relative to estimation of (Jg. In that case, the above loss function
is not appropriate. Recall the representation of the efficient influence curve
D* = Dy, +Zt,j D%(m) with DL(t,j) = CL(tJ)(L(t,j) — QL(t,j)(l))- We make the
following observation (using short-hand notation):

VAR(D*(Qo,90)) = EDj) + > EoDji
[2%]
= EDjq+ Z EoCLujy(L(t, 7) — Qray(1))%,

tj

This suggests to use as loss function for Q. j), t > 1, the weighted squared-
error loss function:

Ly(Q) = Z Cup (Lt ) = Quay(1))?,

which is indexed by a weight function C’%m ) One would need to obtain an
initial estimator of these weights which depend on both @)y and gg. However,
note that even if we estimate these weights inconsistently, then this loss func-
tion Ly(Q) remains a valid loss function for @y, thereby preserving the double
robustness of the resulting targeted maximum likelihood estimator of Q.

In van der Laan and Gruber (2009) other loss functions implied by the effi-
cient influence curve are proposed, including the variance of efficient influence
curve at a collaborative estimator of gj.

3.6 The targeted-MLE at a degenerate initial estimator
for intermediate time-dependent covarariate factors.

Consider the likelihood factorization as used to define the G-computation for-
mula, and assume that the IPCW estimating function is of the form stated in
the above Theorem 3. If one of the node-specific conditional distribution is
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estimated with a degenerate conditional distribution, given the data generated
by previous node-specific conditional distributions, then Theorem 3 implies
that the projection of a function of O on the tangent space generated by that
factor equals zero.

For example, suppose the likelihood is factored according to the ordering
L(0), A(0), L(1), A(1),Y. The projection of a function D(O) onto the tan-
gent space of Q1) is zero at a degenerate (Qr(1), even if the true conditional
distribution of L(1) is not degenerate.

This insight suggests a simple-to-compute version of targeted MLE. Sup-
pose we obtain an initial estimator Q° that is degenerate for all factors except
the last one, and we use the empirical distribution for the marginal distribution
of the baseline covariates. In that case, only the last factor, say Qy—_rx+1),
needs to be updated in the targeted MLE algorithm. As a consequence, the
targeted MLE requires only one update, and thus converges in one single up-
dating step.

Thus, in this case one estimates most of the system with a deterministic
system, and only the last factor is estimated with a non-degenerate conditional
probability distribution that is updated with a clever covariate depending on
the treatment mechanism. Due to the double robustness of the targeted MLE,
the resulting targeted MLE will be consistent and asymptotically linear if
the treatment mechanism is correctly specified, and will still gain efficiency if
the degenerate distributions are doing a reasonable job: since the degenerate
distribution will be misspecified it is not reasonable anymore to rely on correct
specification of the initial estimator Q° of @, for consistency. Note also that
this simplified targeted ML estimator still allows us to apply the collaborative
targeted MLE approach for selection among different treatment mechanism
estimators based on the log-likelihood of the targeted estimator Q! indexed
by the treatment mechanism estimator: see van der Laan and Gruber (2009).

We can view this particular simple targeted maximum likelihood estimator
as one particular candidate among a set of candidate targeted maximum like-
lihood estimators, and use loss-based cross-validation to select among these
candidate targeted maximum likelihood estimators. One would use one of our
proposed (efficient-influence curve based) loss functions, such as the weighted
squared error loss function, since the log-likelihood loss function will become
undefined as a degenerate distribution.

3.7 Dimension reduction for time-dependent covariates.

One could use a loss function on the Q-factor of the binary coded complete data
structure, and use loss-function based cross-validation to select among different
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fits, thereby implicitly carrying out a dimension reduction. For example, by
not including a node in the graph in parent sets of other nodes it will be
equivalent to removing the node from the data structure, and such moves
can be scored based on the loss function. In this manner one might build an
initial estimator (), whose G-computation formula for parameter of interest
is only affected by conditional distribution of subset of all nodes, thereby also
simplifying the targeted MLE update.

Here we wish to investigate alternative targeted dimension reductions that
would, in particular, reduce the computational complexity of the targeted max-
imum likelihood estimator which is driven by the number of binary variables
coding the data structure. This reduced complexity/dimension can also imply
that the loss function for the )y of the reduced data structure implies a more
targeted dissimilarity for the purpose of fitting U(Q).

If a multivariate L(t) is reduced to a one dimensional time-dependent co-
variate, then the targeted maximum likelihood estimator is simpler, but if this
reduction means that A(t) now depends on measured variables beyond the
one dimensional reduced time-dependent covariate, then this reduction will
also have caused bias. In addition, much information might have been lost,
thereby causing variance. So care is needed.

Let’s revisit the two-stage sequentially randomized controlled trial with
data structure O = L(0), A(0), L(1), A(1),Y = L(2), but let’s now consider
the more general case that L(1) can be a multivariate vector with discrete
and /or continuous components. Suppose that we wish to estimate EY (1,1).
Inspection of the efficient influence curve of EY(1,1) shows that it only de-
pends on the conditional distribution of Y through its mean E(Y | A(0) =
1,A(1) = 1,L(1)). This suggest that Lo(1) = E(Y | A(0), A(1) = 1,L(1))
denotes a targeted dimension reduction: below we provide a general approach
which implies this precise dimension reduction. In addition, let L (1) be de-
fined as the propensity score P(A(1) = 1 | L(0),A(0),L(1)). A targeted
dimension reduction of the observed O is now given by
(L(0), A(0), Lg(1), Ly(1), A(1),Y). We can fit both Lg(1) and Ly(1) from the
data using super-learning, thereby obtaining an estimated dimension reduc-
tion O". A targeted MLE for this (estimated) reduced data structure now
involves fitting Qr,a1), Qr,1), and Qy, where only the conditional mean of
Y is needed. However, by definition of Lg(1), the conditional mean of Qy at
A(1) =1 equals Lg(1), suggesting that we can exclude Ly(1) from the parent
set of Y without meaningful loss of information. Then, the conditional distri-
bution Qr,1) does not affect the G-computation formula of the distribution
of Y(1,1) or, more general, the joint distribution of Y (1,1) and L(0). As a
consequence, in this case we do not even need to fit Q).
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To summarize, in this manner we have succeeded in dramatically reducing
the complexity of a targeted MLE by replacing the fitting of a conditional
distribution of a multivariate random variable L(1) into fitting of a univariate
conditional distribution of Lg(1).

Let’s now generalize this type of targeted dimension reduction procedure.
Consider a general longitudinal data structure L(0), A(0), ..., L(K), A(K),Y =
L(K + 1), and let’s consider the case that A(j) is binary, j = 0,..., K. The
dimension reduction can be guided by the actual form of the efficient influence
curve for the target parameter. To demonstrate this, we first note that the effi-
cient influence curve can often be represented as Drpew (9o, ¥0)(L(0), A, Y) —
St o E(Dipew | A(j), Pa(A(j))) — E(Dipew | Pa(A(j))) for some IPCW-
estimating function (see van der Laan and Robins (2003)). The latter dif-
ferences of two conditional expectations can also be written as C'(j)(A(5) —
P(A(j) =1| Pa(A(j)), where

C(j) = E(Drpow | A(j) = 1, Pa(A(j))) — E(Drpew | A(j) = 0, Pa(A(7)))-

For example, if 19 = EY (1), then D;pcw (0) = {I(A=1)/g(A | X)}Y — 1.
As we did before, we can factorize this difference of conditional expectations in
terms of a factor only depending on )y and a factor only depending on gy. We
can define Lg(j) as the Qo-factor only, thereby preserving double robustness
of the resulting targeted MLE. In addition, we define

Ly(j3) = P(A(j) = 1| Pa(A(j))-

If the target parameter is EY (a) for a static regimen a, it follows that the
efficient influence curve depends on O through the reduction

0" = (L(O)’A(O)>LQ(1)>L9(1)’A(1)7 ce LQ(K)a LQ(K)aA(K)>Y

If the target parameter is EY (d) for a dynamic treatment rule d, then, one
also needs to include the time-dependent covariate the rule d uses to assign
treatments. To summarize, inspection of the efficient influence curve of the
target parameter defines a reduction O" in terms of two time-dependent co-
variate processes, one representing the treatment asssignment probabilities as
functions of the past, and one based on the (Qy-functions making up the ef-
ficient influence curve. These time-dependent covariates depend on unknown
Qo and go. We will estimate these time-dependent covariates, by estimating
the treatment mechanism, and the required Lg(j). We can now apply the
targeted MLE to this reduced data structure.

As in our previous example, suppose that for each of the conditional distri-
butions of Y and Lg(j), j = 1,..., K, we do not include any of the L,(j) in the
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parent sets. We suggest that this comes at little cost in efficiency. Under this
condition, the conditional distributions (r, ;) do not affect the G-computation
formula of the distribution of Y'(d) or, more general, the joint distribution of
Y'(d) and L(0). As a consequence, in that case we do not even need to fit Q7 ;,
7 =1,..., K. To summarize, in this manner we can dramatically reduce the
complexity of a targeted MLE by replacing the fitting of a conditional distri-
bution of a multivariate random variable L(j) into only fitting the univariate
conditional distributions of Lg(j) and possibly the conditional distribution of
another time-dependent covariate that is used to define the target parameter
(e.g., treatment rule based on time dependent biomarker). Note that we will
still fit the treatment mechanisms of A(j) conditional on its parents (under
O") including L,(7), and thus just fit P(A(j) =1 | Pa(A(j))) with L,(j) itself.

This dimension reduction still allows for the construction of a collaborative
estimator g, of go, given an estimator (), of ), representing the conditional
distributions of Lg(j), Ly(j) and Y. This just requires applying the C-T-MLE
algorithm as presented in van der Laan and Gruber (2009) to the log-likelihood
for Qf, thereby scoring a fit of gy with the log-likelihood (or other loss function)
of the targeted MLE of (Jf, corresponding with the fluctuation function implied
by the candidate go-fit.

By using as loss function the variance of the influence curve of the targeted
MLE we can still select among different targeted maximum likelihood estima-
tors indexed by different dimension reductions of the type presented above,
assuming that each of them puts the maximal effort in obtaining an unbiased
estimator.

4 Discussion

Targeted maximum likelihood estimation, combined with loss based super
learning fully utilizing the power of cross-validation for bounded loss func-
tions, provides an exceptional powerful framework for assessing causal effects,
with distinct advantages relative to other proposed methodology. The current
paper lays the ground work for the implementation of targeted maximum likeli-
hood estimators that also incorporate time-dependent covariates and outcome
processes. Time dependent covariates and outcome processes allow reasonably
accurate imputations of the clinical outcome based on recent history, thereby
allowing for significant potential gains in both efficiency and bias (see formula
of effcicient influence curve/clever covariates). Even though almost all current
clinical trials collect time dependent data, these important sources of infor-
mation have been ignored in the assessment of the causal effect of a drug or
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treatment strategy. Clinical trials provide just one important application of
the targeted maximum likelihood estimator. Other important applications are
the assessment of causal effects of treatment rules in sequentially randomized
controlled trials, and observational studies.
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